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a b s t r a c t

Solid oxide fuel cells (SOFCs) are considered to be among the most important fuel cells. However, SOFCs
present a challenging control problem owing to their slow dynamics, nonlinearity, and tight operating
constraints. In this paper, we propose a model predictive control (MPC) strategy based on genetic opti-
mization to solve the SOFC control problem. First, a support vector machine (SVM) model is identified
to approximate the behavior of the SOFC system, then a specially designed genetic algorithm (GA) is
employed to solve the resulting constrained nonlinear predictive control problem. A terminal cost is
odel predictive control
upport vector machine
enetic algorithm
erminal cost

incorporated into the standard performance index to further enhance the control performance. More-
over, the GA is accelerated by improving the initial population based on the optimal control sequence
obtained for the previous sampling period and a local controller. In addition, a dynamic constraint is
also adopted in order to meet the requirements for the desired fuel utilization and control constraints.
The measures to achieve offset-free properties are also discussed. Simulation results on an SOFC system
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. Introduction

Solid oxide fuel cells (SOFCs) are considered to be among the
ost important fuel cells. Among the various types of fuel cell, solid

xide fuel cells (SOFCs) have attracted considerable interest as they
ffer a wide range of applications, flexibility in the choice of fuel,
igh system efficiency, etc. [1]. However, SOFCs present a challeng-

ng control problem owing to their slow dynamics, nonlinearity,
nd tight operating constraints [2].

Model predictive control (MPC) appears to be the most appropri-
te control strategy for SOFCs. A comparable H∞ control strategy for
n SOFC model has been shown to be unsatisfactory [2]. Recently, a
ata-driven linear MPC strategy using subspace system identifica-
ion was proposed in Ref. [3] to control an SOFC system. However,

ore researchers have resorted to nonlinear MPC strategies for
etter control performance [4–9]. These studies have typically
mployed nonlinear models, such as the Hammerstein model or the
adial basis function (RBF) neural network model, as predictors, and
hen a non-deterministic polynomial–time hard (NP-hard) nonlin-

ar optimization problem was solved on-line using conventional
onlinear optimization techniques, e.g. sequential quadratic pro-
ramming (SQP). In contrast to these studies, genetic algorithm
GA)-based MPC has been widely studied in recent years because

∗ Corresponding author. Tel.: +86 25 83795951x804; fax: +86 25 83795951x801.
E-mail address: lyg@seu.edu.cn (Y. Li).

378-7753/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.03.010
thod can successfully deal with the control and control move constraints,
oop performance can be achieved.

© 2011 Elsevier B.V. All rights reserved.

GAs have a number of advantages over conventional nonlinear
optimization techniques in solving the constrained nonlinear opti-
mization problem [10–15].

In this paper, we propose a constrained MPC strategy to solve
the SOFC control problem based on a support vector machine (SVM)
and genetic optimization. A terminal cost is incorporated into the
standard performance index to make it possible to adopt short
horizons while maintaining a satisfactory performance. Moreover,
specially designed genetic operators are employed to make the
newly generated chromosomes satisfy the constraints automati-
cally, and the GA is accelerated by improving the initial population
based on the optimal control sequence obtained at the previous
sampling period and a local controller. In addition, the measures to
achieve offset-free properties are also discussed.

The paper is organized as follows: Sections 2 and 3 introduce
the SOFC system and some points that need to be considered for
the design of a controller. Section 4 gives a brief introduction to the
SVM. Constrained nonlinear predictive controller design using GA
optimization is presented in Section 5. The simulations and discus-
sions are presented in Section 6. This is followed by the conclusion
in Section 7.
2. SOFC system description

The SOFC system includes a fuel processing unit or reformer and
a fuel cell stack. Hydrogen is the main fuel for most types of fuel
cell. Nevertheless, other fuels, such as methane, methanol, ethanol,

dx.doi.org/10.1016/j.jpowsour.2011.03.010
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:lyg@seu.edu.cn
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Fig. 1. SOFC sys

asoline, and oil derivatives, can also be used when a reformer is
ncluded in a fuel cell system for converting the fuel into hydrogen.

The basic components of an SOFC are the anode, the cath-
de, a ceramic electrolyte, and two ceramic electrodes. In a fuel
ell, fuel is supplied to the anode and air is supplied to the cath-
de. At the cathode–electrolyte interface, oxygen molecules accept
lectrons from the external circuit to form oxide ions. The elec-
rolyte layer allows only oxide ions to pass through it, and at the
node–electrolyte interface, hydrogen molecules present in the
uel react with oxide ions to form steam with the release of elec-
rons. These electrons pass through the external circuit and reach
he cathode–electrolyte layer, and thus the circuit is closed.

In this paper, a widely accepted dynamic model of an SOFC sys-
em is adopted [2–7], as shown in Fig. 1, where Vdc denotes the
tack output voltage (V), qf the natural gas flow rate (mol s−1), and
the external current load (A); pH2 , pO2 , and pH2O denote the par-
ial pressures of hydrogen, oxygen, and water (Pa), respectively;
nd qin

H2
and qin

O2
are the input flow rates of hydrogen and oxygen

mol s−1), respectively. Table 1 contains the parameters of the SOFC
odel [2].
Applying Nernst’s equation and taking into account ohmic, con-

entration, and activation losses (i.e., �ohmic, �conc, and �act), the

tack output voltage is represented as follows by applying Laplace
ransforms [2–7]:

dc = V0 − �act − �ohmic − �conc (1)

able 1
arameters in the SOFC system.

Parameter Value Unit Representation

T0 1273 K Absolute temperature
F0 96,485 C mol−1 Faraday’s constant
R0 8.314 J mol−1 K−1 Universal gas constant
E0 1.18 V Ideal standard potential
N0 384 – Number of cells in series in the stack
Kr 0.996 × 10−3 mol s−1 A−1 Constant, Kr=N0/4F0

KH2 8.32 × 10−6 mol s−1 Pa−1 Valve molar constant for hydrogen
KH2O 2.77 × 10−6 mol s−1 Pa−1 Valve molar constant for water
KO2 2.49 × 10−5 mol s−1 Pa−1 Valve molar constant for oxygen
�H2 26.1 s Response time of hydrogen flow
�H2O 78.3 s Response time of water flow
�O2 2.91 s Response time of oxygen flow
�H−O 1.145 – Ratio of hydrogen to oxygen
r 0.126 � Ohmic loss
�f 5 s Time constant of the fuel processor
∂ 0.05 – Tafel constant
ˇ 0.11 – Tafel slope
IL 800 A Limiting current density
ynamic model.

V0 = N0

[
E0 + R0T0

2F0
ln

pH2 (pO2 /101, 325)1/2

pH2O

]
(2)

where

pH2 = 1/KH2

1 + �H2 s

(
1

1 + �f s
qf − 2KrI

)
(3)

pO2 = 1/KO2

1 + �O2 s

(
1/�H−O

1 + �f s
qf − KrI

)
(4)

pH2O = 1/KH2O

1 + �H2Os
2KrI (5)

�ohmic = Ir (6)

�act = ∂ + ˇ ln I (7)

�conc = −R0T0

2F0
ln

(
1 − I

IL

)
(8)

3. Design considerations for an SOFC system

The following aspects should be considered in the design of a
controller for the SOFC system:

(1) A nonlinear controller is preferred over a linear controller
because of the nonlinearity of the SOFC in response to a change
of operating points. The stationary voltage/current character-
istics of an SOFC system are depicted in Fig. 2, which shows
that the SOFC exhibits nonlinear behavior over a wide operat-
ing regime. The stack voltage usually shows significant changes,
especially at low and high current loads, and an overloaded
current leads to a rapid deterioration of the operating stack
voltage.

(2) As a measurable disturbance, the current load I should be uti-
lized to construct a feedforward loop to keep the output voltage
steady by speeding up the initial response of fuel flow to drastic
current changes.

(3) Besides ordinary actuator constraints on the control signal, the
fuel utilization of the SOFC system should also be kept within a
safe range for as long as possible. Fuel utilization is one of the
most important operating variables that can affect the perfor-

mance of an SOFC. Fuel utilization is defined according to Eq.
(9):

uf =
qin

H2
− qo

H2

qin
H2

=
qr

H2

qin
H2

= 2KrI

qin
H2

(9)
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ig. 2. Voltage–current characteristics of an open-loop SOFC under different fuel
ow conditions.

where qin
H2

, qo
H2

, and qr
H2

are the hydrogen input, output, and
reacted flow rates, respectively. The desired range of fuel uti-
lization is from 0.7 to 0.9. This is in order to prevent overused
and underused fuel conditions; an overused-fuel condition can
lead to permanent damage to the cells due to fuel starvation,
while an underused-fuel situation results in low efficiency of
the SOFC [3–6].

. Support vector machine

This section briefly reviews the ε-SVM algorithm [16,17].
Consider the training data set D = {xi, yi}m

i=1, where xi is the ith
nput data in the input space Rn and yi ∈R is the corresponding
utput value. The SVM approximates the relationship between the
nput and output data points in the following form:

(xi) =
〈

w, �(xi)
〉

+ b (10)

here w is a vector in the feature space F ⊆ Rn, �(xi) is a mapping
rom the input space to the feature space F, b is the bias term, and
., .〉 denotes the inner product in F.

The ε-SVM model is aimed at minimizing the loss func-
ion 1

2 ‖w‖2 + (C/m)
∑m

i=1

∣∣yi − F(xi)
∣∣
ε

based on the following
-insensitive model:

yi − F(xi)
∣∣
ε

= max{0,
∣∣yi − F(xi)

∣∣ − ε} (11)

The optimization problem can be formulated as:

in J(w, b, �+
i

, �−
i

) = min
w,b,�+

i
,�−

i

1
2

‖w‖2 + C

m

m∑
i=1

(�+
i

+ �−
i

) (12)

.t.

⎧⎨
⎩

yi −
〈

w, �(xi)
〉

− b ≤ ε + �+
i〈

w, �(xi)
〉

+ b − yi ≤ ε + �−
i

�+
i

, �−
i

≥ 0
here ε is the maximum tolerable error, �+
i

and �−
i

are slack
ariables, II · II is the Euclidean norm, and C is a parameter that
epresents a trade-off between the model complexity and the tol-
rance to an error larger than ε. The dual form of Eq. (12) becomes
Fig. 3. Block diagram of the proposed nonlinear predictive controller.

a quadratic programming (QP) problem as follows:

max
˛+,˛−

m∑
i=1

yi(˛
+
i

− ˛−
i

) − 1
2

m∑
i=1

m∑
j=1

(˛+
i

− ˛−
i

)(˛+
j

− ˛−
j

)K(xi, xj)

− ε

m∑
i=1

(˛+
i

+ ˛−
i

) (13)

s.t.

m∑
i=1

(˛+
i

− ˛−
i

) = 0,

˛+
i

, ˛−
i

∈
[

0,
C

m

]
, i = 1, . . . , m

where K(xi, xj) = �T(xi)�(xj) is a kernel function. Motivated by Mer-
cer’s condition, the kernel function handles the inner product in the
feature space and hence the explicit form of �(xi) does not need to
be known.

The solution of the QP problem, Eq. (13), gives the optimum val-
ues of ˛+

i
and ˛−

i
. One then obtains w =

∑m
i=1(˛+

i
− ˛−

i
)�(xi), where

some of the coefficients (˛+
i

− ˛−
i

) have non-zero values and the
corresponding training data points have an approximation error
equal to or larger than ε. When only the support vectors corre-
sponding to non-zero values of ˇi = (˛+

i
− ˛−

i
) are considered, Eq.

(10) becomes:

F(xi) =
l∑

j=1

ˇjK(xi, xj) + b (14)

where l denotes the number of support vectors in the model. The
bias b is calculated as:

b = −1
2

m∑
i=1

(
˛+

i
− ˛−

i

)
(K(xr , xi) + K(xs, xi)) (15)

where xr and xs are support vectors.

5. Constrained model predictive control with a terminal
cost based on genetic optimization

The structure of the proposed nonlinear predictive control is
given in Fig. 3, where Vr is the set-point for the output voltage. A
nonlinear SVM model is first identified to approximate the behavior
of the SOFC system, and then a specially designed GA is employed to

solve the resulting nonlinear constrained predictive control prob-
lem. In addition, a dynamic constraint unit is adopted in Fig. 3
in order to meet the requirements for fuel utilization and control
constraints.
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.1. Identification of the SOFC system based on SVM

To achieve nonlinear predictive control, a nonlinear SVM model
s used to approximate the behavior of the SOFC system.

Considering the effect of the dynamics of the SOFC system up
o third order, the output of the system at sampling instance k + 1
an be reasonably written as a function of past outputs, control
nputs, and measurable disturbance inputs at the kth, (k − 1)th, and
k − 2)th instants. Thus:

Vdc(k + 1) = F[Vdc(k), Vdc(k − 1), Vdc(k − 2), qf (k), qf (k − 1),
qf (k − 2), I(k), I(k − 1), I(k − 2)]

=
l∑

i=1

ˇiK(xi, x̃(k)) + b (16)

here x̃(k) = [Vdc(k), Vdc(k − 1), Vdc(k − 2), qf (k), qf (k − 1), qf

k − 2), I(k), I(k − 1), I(k − 2)]T is the input vector to the SVM
odel at instant k, xi(i = 1, 2, . . ., l) are support vectors in the
odel, and ˇi and b are constant coefficients obtained through

raining.
The procedure for SVM identification of the SOFC system can be

ummarized as follows:

1) A set of measured I/O data (qi
f
, Ii, V i

dc
), i = 1, 2, . . . , m is first

acquired from the SOFC system. The samples should cover
the whole working range.To prevent some elements that have
larger original absolute values from dominating the final kernel
value, it is necessary to carry out some preprocessing of the raw
data before feeding them into the SVM model. In this project, all
of the feature elements and the target values have been scaled
so that they fall into the range of [−1,1]. When using this SVM
model, the computed target value should be converted back to
the same scales that were used for the original target values.

2) Next, the training samples of the SVM are organized using xi =[
Vi+2

dc
, V i+1

dc
, V i

dc
, qi+2

f
, qi+1

f
, qi

f
, Ii+2, Ii+1, Ii

]T

as the input vari-

able and yi = Vi+3
dc

as the output variable, i = 1, 2, . . ., (m − 3).
3) The parameters of the SVM, including the weighting coeffi-

cient C, the width parameter 	 (a Gaussian kernel function is
adopted), and ε, are set. 	 and C affect the generalization ability
of the SVM in opposite directions. Setting C too low will result
in insufficient learning from the training data, while setting C
too high will lead to overfitting.

4) Lastly, the optimization problem, Eq. (12), is constructed and
solved.

Herein, the optimization problem, Eq. (12), is practically solved
y its dual problem, Eq. (13), using the sequential minimal opti-
ization (SMO) algorithm [18,19]. The values of ˛+

i
and ˛−

i
are

hen determined, and the nonlinear SVM model of the SOFC can be
cquired according to Eq. (16).

.2. Formulation of the predictive control problem for an SOFC

Because of the use of a nonlinear SVM predictive model, an NP-
ard nonlinear optimization problem needs to be solved to achieve
he MPC. A GA has been shown to give better performance than
quasi-Newtonian optimization technique in solving this kind of
ptimization problem [12]. In this study, the standard GA-based
odel predictive control has been modified by taking advantage
f the well-developed theory on the stability of model predictive
ontrol [20–22].

The three key ingredients of a stabilizing predictive control are
ummarized in Ref. [20], which comprise a terminal set, a terminal
ost, and a local controller. In this study, we have employed a linear
ces 196 (2011) 5873–5880

quadratic (LQ) controller as the local controller and a corresponding
terminal cost has been incorporated into the performance index of
the standard GA-based MPC.

The performance index and the constraints of the MPC for the
SOFC system are defined by:

J(k) =
N−1∑
i=0

[
(x(k+i+1|k)−x̄)T Q (x(k + i + 1|k) − x̄)

+ R
q2
f (k + i|k)

]
+ �(x(k + N + 1|k) − x̄) (17)

{
x(k + i + 1|k) = F ′[x(k + i|k), qf (k + i|k), Iv(k + i)]
Vdc(k) = [ 1 0 0 0 0 ]x(k)

(18)

q̃f min ≤ qf (k + i|k) ≤ q̃f max, i = 0, . . . , N − 1 (19)


qf min ≤ 
qf (k + i|k) ≤ 
qf max, i = 0, . . . , N − 1 (20)

where N is the prediction horizon; F′( . ) is the state-space represen-
tation of the SVM model F(.) in Eq. (16) by setting the state vector
x(k) = [Vdc(k), Vdc(k − 1), Vdc(k − 2), qf(k − 2), qf(k − 1)]T ; x(k + i + 1|k)
is the predicted state at instant k + i + 1 based on the current state
x(k) and control sequence; 
qf(k + i|k) = qf(k + i|k) − qf(k + i − 1|k) is
the predicted change in the control input signal; x̄ is the equi-
librium value of the state vector corresponding to the current
set-point (see (27)); Q = QT ≥ 0, R > 0; [q̃f min, q̃f max] are dynamic
constraints to meet the requirements for fuel utilization and con-
trol constraints, which will be described in Section 5.3; and Iv(k) =
[I(k), I(k − 1), I(k − 2)]T .

The last term in Eq. (17) represents the terminal cost. This ter-
minal cost represents the stabilizing cost that would be required
when the system is to be controlled beyond the finite-time horizon
N toward the infinite-time horizon. We assume that this stabilizing
controller can be designed by a fictitious local LQ controller near the
equilibrium point.

The optimal cost in driving the system to equilibrium from the
time instant k + N + 1 to the infinite time is defined by:

�(x(k + N + 1|k) − x̄) = (x(k + N + 1|k) − x̄)T P(x(k + N + 1|k) − x̄)

(21)

where P is the symmetric positive semi-definite solution of the
algebraic Riccati equation:

P = AT PA − AT PB(BT PB + R̃)
−1

BT PA + Q̃ (22)

where A and B are constant matrices of appropriate dimensions
obtained by linearizing or identifying the SOFC system Eq. (1)

around the nominal operation point; and Q̃ = Q̃
T ≥ 0 and R̃ > 0

are the weighting matrices for the local LQ controller.
The local controller KLQ corresponding to the terminal cost is

designed as:

KLQ = −(BT PB + R̃)
−1

BT PA (23)

In formulating the optimization problem, (17)–(20), we assume
that there is a finite horizon length N, such that the prediction of the
state vector, x(k + N + 1|k) ∈ �, where ˝ is the terminal set, and the
constraints can be assumed to be inactive for i ≥ N, because it is very
difficult to calculate the terminal set for a given nonlinear system,
and also to reduce the computational load. As a result, the terminal
set constraint is omitted in (17)–(20). Note that the assumption

concerning the terminal set may be met if the prediction horizon
is long enough or, in the case of short horizon, a large weighting
matrix R̃ is used in designing the local controller.

The local LQ controller is only used to determine a terminal
penalty matrix P off-line and to help the GA improve the initial
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opulation, which will be illustrated in Section 5.5. This method
oes not require the globally optimal input profile to be found
umerically at every step. Stability only requires feasible solutions
o the optimization problem. The computational (and performance)
dvantage of this scheme lies in the fact that shorter horizons can be
sed, without jeopardizing performance and stability. This is espe-
ially beneficial for on-line application of the GA-based predictive
ontrol approach.

.3. Calculation of the dynamic constraints

We assume that the safe range of fuel utilization is within [ufmin,
fmax], and that the actuator constraints on the control signal are
qfmin, qfmax]. The dynamic constraint unit in Fig. 3 is designed as
ollows.

In terms of Eq. (9), to guarantee a safe utilization, the hydro-
en flow should be within [qH2 min, qH2 max], where qH2 min(k) =
KrI(k)/uf max and qH2 max(k) = 2KrI(k)/uf min.

Because it is appropriate to approximate the fuel-
rocessing unit using a first-order transfer function, we
an calculate the constraints [q′

f min, q′
f max] on the fuel

ow (the natural gas flow rate) from [qH2 min, qH2 max]. For
xample, in the case of sample time Ts = 1 s, q′

f max(k) =
qH2 max(k) − 0.8187qH2 (k))/0.1813, q′

f min(k) = (qH2 min(k) −
.8187qH2 (k))/0.1813.

The final dynamic constraints [q̃f min, q̃f max] on the fuel flow can
hus be calculated using:

˜ f min = max(qf min, q′
f min) (24)

˜ f max = min(qf max, q′
f max) (25)

.4. Offset-free output tracking

To achieve offset-free output tracking, a simple disturbance esti-
ator is run at each step, assuming that the state disturbance is

iven by the difference between the latest measured state and the
reviously expected state:

ˆ (k) = x(k) − x(k|k − 1) (26)

This is then used to estimate the equilibrium values of the state
ector x̄ and the fuel flow q̄f , assuming that the disturbance will

emain constant at this estimated value: d̄ = d̂(k). Specifically, x̄
nd q̄f are found as the solutions to the simultaneous equations:

x̄ = F ′[x̄, q̄f , Iv(k)] + d̄
Vr = [ 1 0 0 0 0]x̄

(27)

ote that this results in offset-free control in the presence of an
nknown but constant disturbance, even if the steady-state gains

n the model are not accurate.
Another measure to achieve offset-free properties is to intro-

uce an integration action. We assume that x′(k) = [
Vdc(k),
Vdc(k − 1), 
V(k − 2), 
qf(k − 2), 
qf(k − 1), e(k)]T, where

(k) = Vr(k) − Vdc(k). The performance index is accordingly modified
s:

(k) =
N−1∑
i=0

[x′T (k + i + 1|k)Q x′(k + i + 1|k) + R
q2
f (k + i|k)]
+ �(x′(k + N + 1|k)) (28)

Because this method may result in integrator wind-up, this part
f the contents is omitted herein.
ces 196 (2011) 5873–5880 5877

5.5. Genetic optimization of control inputs

Due to the use of an SVM model, the proposed method for-
mulates a dynamic nonlinear optimization problem, to which the
conventional optimization techniques cannot be easily applied.
Therefore, in this work, the on-line optimization problem is solved
using a GA.

To deal with constraints in this optimization problem, the
penalty function method is commonly used. However, this
approach lowers the efficiency of a GA, because of the waste of
genetic material due to unfeasible solutions stemming from stan-
dard genetic operators in the population. In this study, specially
designed genetic operators have been employed to make the newly
generated chromosomes satisfy the constraints automatically.

The algorithm starts with an initial population of chromosomes,
which represent possible solutions of the optimization problem.
The objective function is computed for each chromosome. New
generations are produced by the genetic operators, which are des-
ignated as selection, crossover, and mutation. The algorithm stops
after the maximum permissible time has elapsed.

A chromosome that is a candidate solution of the optimiza-
tion problem is represented by si, the elements of which comprise
present and future control inputs, and has the following structure
[13]:

si = [qfi(k) qfi(k + 1) · · · qfi(k + N − 1)], i = 1, . . . , L (29)

where k indicates the current time, and L is the number of chromo-
somes. The algorithm can be described as follows:

Step 1 (initial population generation): the number of iterations
iter = 1 is set. Predictive control uses the receding horizon princi-
ple, which implies that an evolution has to be calculated at each
time step. Hence, the past evolutions give important information
that can be used to improve the initial population of the current
evolution

The optimal input sequence obtained at k − 1 is assumed to
be U∗(k − 1) = {q∗

f
(k − 1), q∗

f
(k), . . . , q∗

f
(k + N − 2)}. At the cur-

rent time k, we consider a “shifted” input sequence Ũ(k) as shown
below, where the last gene takes q̃f (k + N − 1), obtained using the
designed local controller, to be one of the initial chromosomes. This
chromosome might be a very good guess for the solution of the next
optimization problem.

where the newly added tail is defined by

q̃f (k + N − 1) =

⎧⎨
⎩

low if q̃′
f

< low

q̃′
f

if low ≤ q̃′
f

≤ upper

upper if q̃′
f

> upper

(30)

q̃′
f = KLQ (x(k + N − 1|k) − x̄) + q̄f (31)

low = max{0, q∗
f (k + N − 2) + 
qf min} (32)
upper = min{1, q∗
f (k + N − 2) + 
qf max} (33)

To satisfy both the control and control move constraints, we use
a simple procedure to generate the remaining L − 1 chromosomes
s2 − sL of the initial population.
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1) For the current input value:

qfi(k) = min(q̃f max, max(q̃f min, rand[qf (k − 1)

+ 
qf min, qf (k − 1) + 
qf max])), 2 ≤ i ≤ L

2) For the rest of the input values:

qfi(k + j) = min(q̃f max, max(q̃f min, rand[qfi(k + j − 1)

+ 
qf min, qfi(k + j − 1) + 
qf max])),

2 ≤ i ≤ L, 1 ≤ j ≤ N − 1

In the above equations, rand [.] is a random number within [.],
nd a new random number is generated each time.

Step 2 (fitness function evaluation): the objective function of Eq.
17) is evaluated for all of the chosen chromosomes. Their fitness
alue is then calculated according to:

itness(i) = 1
1 + Ji

, i = 1, 2, . . . , L (34)

here Ji is the value of the objective function for the ith chromo-
ome.

The normalized fitness value of each chromosome, that is, the
election probability, is then calculated by:

i = fitness(i)∑L
i=1fitness(i)

(35)

Step 3 (selection operation): the m2 best individuals are
etained and reintroduced into the population of the next gen-
ration. Therefore, the partly optimized chromosomes will not
et lost in spite of the disruption of building blocks during
rossover.

The rest of the L-m2 chromosomes are generated according to
heir selection probabilities. The chromosomes with high fitness
alue have a greater chance of being selected.

Step 4 (crossover operation): for each chromosome, a random
umber r1 between 0 and 1 is generated. If r1 is lower than the prob-
bility of crossover pc, this particular chromosome will undergo
he process of crossover, otherwise it will remain unchanged. The
elected chromosomes are paired and for each selected pair one of
he following two crossover operations is implemented with equal
robability

1) The one-point crossover operation
A random integer z between 1 and N − 1 is generated, which

indicates the position of the crossing point. Two new chromo-
somes are produced by interchanging all of the members of the
parents following the crossing point, which can be expressed
graphically as follows:

si = {qfi(k), . . . , qfi(k + z − 1), |qfi(k + z), . . . , qfi(k + N − 1)}
si+1 = {qf (i+1)(k), . . . , qf (i+1)(k + z − 1), |qf (i+1)(k + z), . . . , qf (i+1)(k + N − 1)}
the one point crossover ⇓
snew

i
= {qfi(k), . . . , qfi(k + z − 1), |qf (i+1)(k + z), . . . , qf (i+1)(k + N − 1)}

snew
i+1

= {qf (i+1)(k), . . . , qf (i+1)(k + z − 1), |qfi(k + z), . . . , qfi(k + N − 1)}

The previous operation might produce infeasible offspring if
the input values at the crossing point do not satisfy the control

move constraints. This situation is avoided by the following cor-
rection mechanism for each of the new chromosomes snew

i
and

snew
i+1 , which modifies the values of the input parameters after

the crossing position so that the control move constraints are
satisfied.
ces 196 (2011) 5873–5880

For snew
i+1 , it is supposed that d = qfi(k + z) − qf(i+1)(k + z − 1), and

then:

qfi(k+z+j)=
{

qfi(k+z+j)−(d−
qf max), if d > 
qf max
qfi(k+z+j)−(d−
qf min), if d < 
qf min

(0 ≤ j ≤ N − z − 1) (36)

Similar equations can be obtained for the chromosome snew
i

.
(2) The uniform crossover operation

For the uniform crossover operation, two new chromosomes
based on si and si+1 are produced by:{

snew
i

= r2 · si + (1 − r2) · si+1
snew

i+1 = (1 − r2) · si + r2 · si+1
(37)

where r2 is a random number between 0 and 1.

Step 5 (mutation operation): for every member of each chromo-
some, a random number r3 between 0 and 1 is generated. If r3 is
lower than the probability of mutation pm, this particular member
of the chromosome will undergo the process of mutation; other-
wise, it will remain unchanged. For the selected members, lower
and upper bounds [bl(j),bu(j)] are defined as:

bu(j)=
{

min(
qf max+qf (k − 1), 
qf max+qfi(k+1), q̃f max), j = 0
min(
qf max+qfi(k+j−1), 
qf max+qfi(k+j+1), q̃f max), 0 < j < N−1
min(
qf max+qfi(k+j−1), q̃f max), j=N−1

(38)

bl(j)=
{

max(
qf min+qf (k−1), 
qf min+qfi(k+1), q̃f min), j = 0
max(
qf min+qfi(k+j−1), 
qf min+qfi(k+j+1), q̃f min), 0 < j < N − 1
max(
qf min+qfi(k + j − 1), q̃f min), j = N − 1

(39)

The above bounds define the region of values that will produce
a feasible solution. The mutation operation is then achieved by the
generation of a random number within [bl(j),bu(j)].

qnew
fi (k + j) = rm(j) if r3 < pm (40)

where rm(j) is a random number within [bl(j),bu(j)].
Step 6 (repeat or stop): if the maximum allowed time has not

elapsed, the algorithm is set and returned to Step 2. Otherwise, the
algorithm is stopped and the chromosome that produced the high-
est value of the fitness function throughout the entire procedure is
selected.

The previous modified GA makes it possible to calculate sub-
optimal control in real time.

6. Simulation results

In this section, we describe application of the proposed nonlin-
ear predictive controller to the SOFC problem to achieve safe fuel
utilization and maintain operational constraints when only the
voltage output is measurable on-line. The sampling rate of the SOFC
and the MPC was chosen as Ts = 1 s. For all simulations, the following
parameters were set: [qf min, qf max] = [0, 1.2] mol s−1, 
qf max =
−
qf min = 0.7 mol s−1, [uf min, uf max] = [0.7, 0.9], pc =
0.8, pm = 0.1, L = 20, m2 = 2, R = 10, Q = Q̃ =
diag( 0.1 0 0 0 0 ).

6.1. Identification of the SOFC system

Open-loop input–output data are required to train the
SVM model of an SOFC system. Open-loop input–output data
samples were obtained by exciting the open-loop SOFC sys-
tem using designed sine signals 0.7823 + 0.3 sin(0.5t) sin t and
300 + 50 sin(0.03t) sin(0.04t) for the fuel and the current demand

(i.e., qf and I), respectively, which were collected over 1000 s and are
plotted in Fig. 4. All 1000 of the sampled data points were divided
into two sets, the training set and the testing set, where the train-
ing set contained 900 data points and the testing set contained the
remaining 100 data points.



Y. Li et al. / Journal of Power Sources 196 (2011) 5873–5880 5879

f
q
s

p
o
s
i
o

6

t

G

w
N
p
h

q

G

T
T

Fig. 4. Input excitation and output response signals of the SOFC.

We first identified the SVM model of the SOFC system with dif-
erent parameter settings, giving the results shown in Table 2. The
uality of the approximation was assessed using the root-mean-
quare error (RMSE) between the samples and the SVM model.

In order to make a trade-off between the accuracy and the com-
lexity of the SVM, we chose C = 10,000, ε = 0.01, and 	 = 40 in terms
f the test error and the number of support vectors in the following
imulations. The corresponding training and test results are plotted
n Fig. 5, which shows that the SVM can approximate the behavior
f the SOFC system with good accuracy.

.2. Predictive control of the SOFC system

By linearizing Eq. (1) around its equilibrium point, we obtained
he transfer function of the SOFC system:

(s) = Vdc(s)
qf (s)

= kg · �s + 1
(�f s + 1)(�H2 s + 1)(�O2 s + 1)

(41)

here kg = Y1 + Y2, � = (Y1�O2 + Y2�H2 )/(Y1 + Y2), Y1 =
0R0T0/(2F0KH2 pH2,0), Y2 = N0R0T0/(4F0�H−OKO2 pO2,0) ·
H2,0 and pO2,0 denote the steady-state partial pressures of
ydrogen and oxygen, respectively.

Specifically, around the nominal operation point with
−1
f = 0.7023 mol s , I = 300 A, Vdc = 333 V:

(s) = 230.37 · 5.85s + 1
(5s + 1)(26.1s + 1)(2.91s + 1)

(42)

able 2
raining and test results with different parameter settings.

	 ε C Training error
(RMSE)

Test error
(RMSE)

Number of
support vectors

20 0.01 10,000 0.0462 0.0454 24
40 0.01 10,000 0.0435 0.0391 16
60 0.01 10,000 0.0416 0.0411 14
40 0.02 10,000 0.0985 0.0888 14
40 0.01 1000 0.0458 0.0405 19
Fig. 5. Training and test results of the SVM model.

Converting Eq. (42) to its equivalent discrete state-space form,
we obtain:{

x(k + 1) = Ax(k) + B
qf (k)
Vdc(k) = Cx(k)

(43)

where A =

⎡
⎢⎢⎣

2.49 −2.051 0.5588 −1.141 1.5981
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎦ ,

B = [ 1.553 0 0 0 1 ]T
, C = [ 1 0 0 0 0 ]

The following positive semi-definite matrix and local controller
are then calculated by Eqs. (22) and (23) with R̃ = 10, 000.

P =

⎡
⎢⎢⎣

88.1 −125.9 45.6 −93.1 237.1
−125.9 181 −65.7 134.2 −348.6

45.6 −65.7 23.9 −48.8 128.6
−93.1 134.2 −48.8 99.7 −262.6
237.1 −348.6 128.6 −262.6 1219.3

⎤
⎥⎥⎦

KLQ = [ 0.0318 −0.0466 0.0172 −0.0351 0.1461 ]

To illustrate the effectiveness of the proposed nonlinear pre-
dictive controller, we assume that a load disturbance causes step
changes of the current at t = 10 s and t = 60 s, respectively. Let N = 2.
Fig. 6 shows a comparison of the closed-loop response of the SOFC
system with terminal cost (solid line) and without terminal cost
(dashed line). These results show that better control performance
can be achieved by considering terminal cost, even though a short
prediction horizon is adopted. The main advantage of adopting a
short horizon is that the on-line computational burden is effec-
tively decreased since both the number of decision variables and
the number of prediction steps are reduced.
6.3. Effect of the dynamic constraints

To show the effect of the dynamic constraints, we replaced
the dynamic constraints on the control input signal in Fig. 6 with
the usual maximum and minimum constraints, which yielded the



5880 Y. Li et al. / Journal of Power Sour

Fig. 6. Closed-loop response of the SOFC with (solid line) and without terminal cost
(dashed line).
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the dynamic constraints. Note that because of the slow response of
the fuel flow to the output voltage and constraints on the fuel flow,
the fuel utilization could not be definitely restricted to the desired
range for large and sudden current load changes.

7. Conclusion

We have proposed a nonlinear predictive control strategy to
solve the SOFC control problem, whereby a nonlinear SVM model
is first identified to approximate the behavior of the SOFC sys-
tem using an SMO algorithm, and then a specially designed GA
is employed to solve the resulting nonlinear constraint predictive
control problem. Meanwhile, the standard performance index has
been modified by incorporating a terminal cost, which makes it pos-
sible to adopt short horizons while maintaining a satisfactory level
of performance. This is especially beneficial for on-line application
of GA-based predictive control. Moreover, the GA was accelerated
by improving the initial population based on the optimal control
sequence obtained at the previous sampling period and a local
controller. Simulation results on the SOFC system have illustrated
that the proposed method can successfully deal with the control
and control move constraints, and that a satisfactory closed-loop
performance can be achieved.
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